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Abstract—In the fall of 2000, several talks were delivered by K. Meyl. These
talks described his theory of so-called Tesla’s scalar waves (e.g., in Meyl
[“Scalar Waves...” (2000) and “Longitudinalwellen-Experiment...” (2000)],
and on his Web site). In the following article, we shall mainly discuss the the-
oretical part of these publications, although the experimental part would de-
serve a detailed discussion in its own right. The scalar wave, according to
Meyl, is an irrotational electric vector solution E of the homogeneous wave
equation having non-vanishing sources. However, and this is Meyl’s logical
flaw, it is not the homogeneous wave equation but Maxwell’s equations that
are the actual starting point of any theory of electromagnetic waves. And, as
will be seen see in Section 1, the homogeneous wave equation is valid only in
vacuum and in its natural generalization, in homogeneous materials without
free charges and currents, while in other cases the inhomogeneous wave
equation would apply. So in Section 2, our next immediate result is that
Meyl’s source conditions are inconsistent with the material properties.
Hence, we have to assume the vector field E to be source free. But— as will
be shown further for this case—Maxwell’s equations do not admit other than
trivial scalar waves of the Meyl type, since only time- independent solutions
are admissible. Under those conditions, the only permissible conclusion is
that Meyl’s scalar waves do not exist. At the end of his talks (Meyl, “Scalar
Waves...” [2000] and “Longitudinalwellen-Experiment...” [2000]), Meyl
makes another remarkable assertion, which we shall discuss in Section 3.
Meyl claims to have generated ‘vortex’ solutions that propagate faster than
light. But for solutions of the homogeneous wave equation, this would clearly
contradict a well-known theorem of the mathematical theory of the wave
equation. In addition, Meyl’s proof for his claim will turn out to be a simple
flaw of thinking.

1. Maxwell’s Equations

We start by reminding the reader of the initial part of Maxwell’s theory: For a
homogeneous medium of constant dielectricity £ and constant permeability oc,

Maxwell’s equations read as follows:
OH
curlE = — y—, (1
ot

divE = 2, 2)
£
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H= &, 3)
curlH= e— + j,
or
divH = 0. (4)

Here g denotes the density of free charges, and j is the current density caused
by the motions of the free charges. These differential equations are actually
extracted from the original integral relations that describe the well-known
standard experiments of (Ersted, Ampere, Biot, Savart and Faraday.

Using standard algebra, each of the vector fields H or E can be eliminated.
This yields

{cud E 1 &’°E Jj
+ =—— = u—
curl cur s uat
and
2 1
curl curl H + 27 = curlj, where = = gu; (5)

and by means of the vector identity

curlcurl F = graddivF — AF

and using Equations 2 and 4, we obtain the inhomogeneous wave equations

10°E 1 1 o°H

dj .
- Zw = ;gradg— ,LLE and AH- ?W = —curl_]. (6)

Thus, restricting ourselves to the normal case of absence of free charges,
where ¢ = 0 and j =0, we obtain the homogeneous Maxwell equations

1E oH (1)
curlE= —p—,
Har
divE = 0, (2%
1H oF 3
curlH= ¢—,
T (3"
divH = 0. (€]
and the homogeneous wave equations
1 &°E 1 °H ,
curlcurl E + Yol =0 and curlcurlH+ =57 =0 (5)
or
AE L OE 0 d AH ! _82H 0 (6”)
— —_—— an — — = .
c? or? c? or?

Conclusion 1. The homogeneous wave equations (6°) are deduced from
Maxwell’s equations under the assumption of the absence of free charges and
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currents. If this assumption is not fulfilled, then only the more general inho-
mogeneous wave equations (6) are valid, and these must be used.

1. Meyl’s Longitudinal Waves

A solution E of the first homogeneous wave equation in Equation 6°, which
satisfies the additional conditions

curlE=0 (7)
and
divE = g £ 0, 2

is denoted longitudinal by K. Meyl in his talks “Scalar Waves...” (2000) and
“Longitudinalwellen-Experiment...” (2000). But the assumption (2”) is a log-
icalflaw, since it contradicts the absence of free charges, o =0, in the medium
(e.g.,in vacuum). Hence, we obtain

Conclusion 2. In order to describe waves in a medium without free charges
(e.g.,in vacuum or in another homogeneous medium without free charges), we
must use Equation 2’ and not Equation 2.

Then we have to discuss solutions of Maxwell’s equations (Equations 1'-4")
under the additional assumption (7), or—which is equivalent—we have to
look for solutions E of the homogeneous wave equation that are irrotational
and source free. But the first equation (5”) together with (7) yields

o’E

— =0, 8

EYe &)
which must be fulfilled by Meyl’s longitudinal E-waves. Thus, E is linearly
time-dependent,

E=E; x)+tE(x).

Butif E (x)# 0, then the energy of the field E contained in some bounded area
would (approximately) increase proportionally to 2. But, in accordance with
energy conservation, the energy should not exceed a fixed constant. Thus, for
energetic reasons, an electric field E linearly increasing with time is impossi-
ble, and we obtain

E(x,1) = Ey(x), )

(i.e., time independent fields are the only source-free longitudinal solutions).
(Here E has to be an arbitrary solution of AE;=0.)
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As a consequence of Equation 7, Meyl is allowed to introduce a potential ¢
(locally) by

E=-grad ¢ (10)
Then, Equation 9 yields the time independency of the potential function @,

AX,1) = Py(X). (11)

Conclusion 3. Maxwell’s equations for media without free charges and cur-
rents do not admit any other than trivial longitudinal waves (E, ) in the man-
ner defined by Meyl. These solutions are not waves since they are time inde-
pendent.

Remarks. The above conclusion is a result of certain discrepancies between
Maxwell’s equations and the wave equation. Of course, every solution of
Maxwell’s equations 14’ will fulfil the wave Equation 6°. But the reverse is
not true, as when, for example, an arbitrary solution for E of Equation 6’ vio-
lates Equation 2’in general. In other words, as demonstrated above, Maxwell’s
Equations 1’4’ together with the additional condition (7) cause such strong
restrictions for the vector field E that only trivial longitudinal solutions can
exist.

At the end of his talks (“Scalar Waves...” [2000] and “Longitudinalwellen-
Experiment...” [2000]), Meyl makes another remarkable assertion. He claims
that there exist ‘vortex’ solutions that have velocities faster than light. If these
‘vortex’ solutions were solutions of the homogeneous wave equation, this
would clearly contradict the results of the mathematical theory of the wave
equation. One of the main results of this mathematical theory is that the maxi-
mum signal velocity is ¢, the velocity of light (cf. e.g., John, 1982; p. 126 ff., or
any other textbook of partial differential equations).

Meyl reports on the 7.0-MHz waves he observed at the receiver during his
experiments, while his (shielded) emitter worked at 4.7 MHz. He explains the
appearance of the higher frequency at the receiver with a higher velocity of the
signal; hence, he concludes, his signal is faster than light.

But an emitter frequency of 4.7 MHz means that the emitter sends 4.7 mil-
lions of waves per second; then by no means can 7.0 millions of waves per sec-
ond can arrive at the receiver, independent of the signal velocity. Where should
the additional number of 2.3 millions of waves have come from? The number
of waves per second at the emitter and at the receiver must agree, whatever the
signal velocity might be. Hence, Meyl’s conclusion of a higher signal velocity
is baseless and a flaw of thinking. (The only possibility of finding out the signal
velocity is to measure the transit time T of the signal over the distance of R be-
tween emitter and receiver. Then the velocity is given by v = R/T. But this is
easier said than done.) Conversely, whenever a signal of 7.0 MHz was detect-
ed at the receiver, it must necessarily have had a source oscillating with the
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same frequency of 7.0 MHz, most likely as an artefact by the electronics, for
example, an intermodulation frequency, which was radiated by an unshielded
cable.

Leaving these experimental difficulties aside, even if Meyl could prove by
reliable measurement that there exist ‘vortex’ solutions faster than light, then
he would have shown by experimental measurement that the wave Equation 6’
could not apply to these ‘vortex’ solutions. But the wave Equation 6’ was
Meyl’s starting point.
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